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Crossroads Workflows

LANL, NERSC, SNL

July 18, 2018

1 Introduction

The Department of Energy (DOE) compute facilities operate as resources for the National Nuclear
Security Administration (NNSA) and Office of Science. In this document we describe a subset of
scientific workflows which are run on current platforms. There is significant commonality to how
Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), Lawrence Liver-
more National Laboratory (LLNL) and the National Energy Research Scientific Computing Center
(NERSC) operate and conduct scientific inquiry with supercomputers. In addition to presenting
the commonality between the sites, we believe that opportunities exist to significantly optimize
the operation of our facilities and more rapidly advance our scientific goals. In describing how our
scientific workflows move from inception to realization we believe that we can enable significant
improvements in how computer architectures support real scientific workflows.

Briefly, in order for a team of scientists to access the large supercomputers at these facilities,
the team must be granted an allocation. Allocations last for a fixed amount of time (usually 6
or 12 months), and a large number of teams will have overlapping allocations ensuring that a
large amount of work is available in the scheduling queue. During the allocation, the scientists
will construct workflows as described in this document. Many simultaneous allocations may use
identical workflows with different data and scientific goals.

1.1 Computational Allocation Workflows

Included below are workflow diagrams that demonstrate two classes of computational science work-
loads: large-scale scientific simulation and data-intensive workflows (which are further divided into
large-scale Uncertainty Quantification (UQ) and High Throughput Computing (HTC)). The large
rectangle at the top of the figures shows the data sets generated throughout the workflow and the
timescale during which the data is retained. In particular, we have differentiated three timescales
of interest: temporary, campaign, and forever. Data generated on temporary timescales includes
checkpoints and analysis data sets that are produced by the application, but the domain scientist
will eventually discard (usually at job completion, or when a later data processing step completes).
The campaign timescale describes data that is generated and useful throughout the execution of
the entire scientific workflow. Once the allocation is complete the scientist will discard the data.
Finally, we consider the data retention period labeled forever. Forever timescale data will persist
longer than the machine used to generate the data. This includes a small number of checkpoint data
sets; however, this is primarily the analysis data sets generated by the application and re-processed
by the user/scientist. Note that the data lifetime categories do not simply correspond to storage
tiers.

The lower portion of the diagram shows the phases of the workflow. A workflow phase is
executed as a series of parallel and/or serial jobs submitted to the batch scheduler and executed
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when sufficient resources exist to execute the submitted jobs. The scheduler may maintain several
job scheduling queues to ensure that high-value jobs, such as jobs constructed to complete the
interactive analysis phase of the workflow, execute immediately (or perhaps during business hours
when scientists will be at their terminals). Most phases of the workflow require executing tens and
possibly thousands of jobs, with each job continuing the progress of prior jobs.

The workflow phases also describe a dependency between the submission of jobs into the schedul-
ing queues. However, the strict ordering requirements are particular to the specific workflow phases.
In some cases, a phase cannot begin until all of the prior phases are complete. In other cases, a
phase cannot begin until the first set of jobs from the prior phases are complete; but there is no
requirement that the prior phases be complete, only that some number of jobs are complete. We
describe these dependencies in detail in sections 1.2 and 1.3. A series of workflow phases may be
instantiated multiple times during an allocation, with each instantiation called a pipeline.

Finally, we include in the workflow phase an icon for the initiator of the jobs submitted during
the phase. The stick person icon indicates that a human is “in the loop” and performing job
submissions. An instrument icon indicates that an external instrument or automated process is
performing the job submissions. We use this icon to indicate that the computational resources
are coupled in near real-time to an on-going experiment or orchestration framework. For example,
compute jobs are automatically submitted to the scheduling queue when data is generated by
LBNL’s Advanced Light Source (ALS) beamlines.

1.2 Simulation Science Workflow Overview

Figure 1 is a Crossroadsworkflow diagram that depicts the phases and data processing common to
most simulation science workflows. In the initial phase we see that the scientist leverages a small
input data set, typically curated over multiple allocations, to construct a set of initial simulation
conditions. Although phase S1 is only depicted once in the diagram, it may occur multiple times
(thus initiating multiple pipelines) during a proposal team’s allocation. Further, the construction of
the initial state (e.g. a complex 3-dimensional mesh) is sometimes a memory-intensive and parallel
process that may use a moderate number of processors or it may require the entire machine. The
typical constraint for initial state creation is acquiring the amount of memory to store the initial
state and write it to file. Not surprisingly then, the generated input data set is usually a large
portion of the memory of the processors allocated to phase 1, often 80% of the memory available
to phase 1 jobs is written to storage.

Phase S2 is generally the most computationally intensive portion of the simulation science work-
flow. Given the initial state/mesh and a small text-based input deck of settings and configurations,
the physics calculations begin. The number of processors allocated to the job depends on the
physics application’s computational and memory requirements. However, it is not uncommon for
a project to use a coarse 2-dimensional mesh to create pilot data before running a much larger 3-
dimensional mesh that spans a much larger portion of the machine. Restart dumps, or checkpoints,
are created with a frequency high enough to ensure that when a job fails or finishes, a subsequent
job can continue execution where the previous job progress ended. The ideal checkpoint interval,
gamma (Γ) multiplied by the job mean time to interrupt (JMTTI) in the above diagram, has been
estimated carefully by Daly [1], and most simulation applications create checkpoints with at least
this frequency.

Although a full system job might run for 24 hours and generate a checkpoint dump hourly,
checkpoints are generally overwritten using an odd/even scheme. Thus, when a phase S2 job
successfully terminates, 3 checkpoints should exist: an odd checkpoint, an even checkpoint, and
an end-of-job checkpoint. As a simulation progresses over the course of several months, a large
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Figure 1: An example of an APEX simulation science workflow.

number of checkpoints will be generated and overwritten, and a large number of checkpoints will
also be deleted, rather than retained. Over the course of an allocation, scientists will often retain
4 - 8 checkpoints for several weeks and possibly for a few months. This enables the scientist to
rollback a week or month of computation in case an anomaly appears later in the simulation. In
the above diagram we show that 4 - 8 checkpoints may be selected for retention each week over the
course of an allocation. Additionally, checkpoints can often be analyzed for progress, and 5 - 15
checkpoints may be retained forever so that portions of the simulation results can be re-calculated
later for verification purposes.

Phase S2 also results in the generation of analysis data sets. These data sets are generated at
evenly spaced intervals in simulated time, but are typically not created uniformly throughout the
life of the project or campaign. That is, the number of calculations required to construct analysis
data sets varies over the duration of the simulation. The output data sets are often large, and
composed of many files to enable multiple types of analysis and analysis tools. Again, to enable
deep analysis of anomalies, a rolling window of un-sampled timestep data dumps are likely to be
maintained during the campaign to enable scientists to examine previously generated results at full
resolution.

Phase S3 shows the common task of down-sampling the analysis data. By their very nature,
all analysis data sets are critical to the scientists, however, once a data set is down-sampled, the
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data at the original resolution is typically too large to be retained (often in the range of 5 - 20%
of the total allocated memory per data set), rather as we described in Phase S2, only a sliding
subset of the original timesteps are retained throughout the campaign to enable a rollback and
examine anomalies. Down-sampling and analysis tasks in general are typically I/O intensive rather
than compute intensive, and thus use the small numbers of compute nodes required to achieve the
necessary memory footprint and adequate I/O bandwidth.

Phase S4 shows another common simulation science task, data post processing. Unlike phase
S3, which is performed as the analysis data sets are generated, phase S4 requires all of the analysis
data sets to exist prior to beginning phase S4. In this process the generated analysis data sets are
formatted such that the regions of interest can be examined by visualization tools. This may involve
concatenating portions of the data into separate data sets that favor visualization in isolation, or
concatenating all of the data for visualization together. All post-processed data is vital to the
scientist and will be retained beyond the lifetime of the campaign.

Phase S5 shows the phase where the scientist uses tools such as Ensight, ParaView and VisIt to
visualize and analyze the simulated and processed timestep data. Interactive visualization typically
occurs as soon as an analysis data set is generated, and then continues on through the life of the
simulation and data processing phases.

A simulation science workflow pipeline is typically composed of each phase in the workflow.
An example of a simulation pipeline could be a series of lower resolution simulations that identify
an area of interest within the simulation space, followed by an extremely detailed, high-resolution
simulation that better explores the regions of interest.

1.3 HTC and UQ Workflow Overview

In this section we describe HTC and UQ workflows. HTC workflows consist of a large number of
low concurrency independent tasks and UQ workflows consist of an ensemble of simulation science
workflows (see Section 1.2) with an extra analysis step over the entire ensemble. We group these
workflows together because both classes of workflow generally use similar software infrastructure to
efficiently execute and collect results from an ensemble of runs. Figure 2 shows the key features of
these workflows. We will describe a UQ workflow with phases U1, U2 and U3 and a HTC workflow
with phases H1, H2 and H3.

1.3.1 UQ

Phase U1 represents two sub-stages: 1) generating a single input mesh for all member of the
ensemble and 2) generating a single input deck for the UQ software and different input decks for
each ensemble member.

Phase U2 shows the action of running the ensemble of N simulations. A popular UQ framework
for achieving this task is Dakota [2]. This framework supports launching an ensemble in a single
batch job with a unique MPI communicator per member or in multiple batch jobs. Ensembles at
Sandia currently consist of 1 to 100 members and 20 to 5000 MPI ranks per member. As before,
checkpoint dumps are written periodically, however, there is now a checkpoint dump per ensemble
member. This means there must be enough temporary storage to retain 3 ×N checkpoint dumps
each on the order of several GB. Analysis data sets are also written throughout the run. A new
workflow characteristic not previously covered is temporary files for communicating information
between the ensemble and Dakota. These files provide a way to use pre-existing applications within
the Dakota framework. To use this feature, a user must write glue code so that relevant information
can be extracted from unmodified simulation data files and passed to Dakota UQ functions. Dakota
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Figure 2: Example HTC and UQ workflow

also provides an API to support tighter coupling without temporary files, however, there will always
be a requirement for loose coupling through files. In future, it is possible that the UQ will be
embedded in the simulation to improve reuse of data and provide more opportunities to make use
of fine-grained parallelism [3].

Phase U3 encapsulates phases 3-5 in Section 1.2. Typical tasks include analyzing the data files
for parameter variation or statistical patterns.

1.3.2 HTC

Phase H1 shows the collection of data from a scientific experiment. The data from the experiment,
labeled as Shared Input and Private Input, is sent from the experimental facility to compute
facilities like NERSC, often over ESnet. The experiment is generally repeated a large number of
times resulting in many input files and an aggregate size on the order of a PB.

Phase H2 shows the HTC analysis on the experimental input files. The high throughput nature
arises because the same analysis is often repeated many times on different input data. For example,
in the Sky Survey workflow the data analysis is run on small batches of about 60 images at a time
out of a collection of millions of images. Workflow Management Software (WMS) is used to manage
the execution of the independent tasks. WMS includes custom user scripts and larger frameworks
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such as Swift, Fireworks and Tigres [4]. The number of concurrent tasks launched by the WMS
depends on how many input data sets are ready for analysis and the number of cores used for each
application.

The HTC analysis is often accomplished using a collection of different applications, where the
output from one application is used as input for next application. This means that file-based
communication happens both between dependent analysis applications and between the WMS and
each analysis application. The applications in Phase H2 rarely have checkpoint/restart capability,
however, resiliency is generally provided at a higher level by the WMS. For example, if Phase H2
consists of 3 applications and the 2nd application fails then the WMS will automatically restart
the 2nd application from the initial state. This is possible because the applications in H2 often
complete in less than a day (longer running applications are generally submitted to different queues,
e.g. at NERSC there is a throughput queue (“thruput”) which provides a job limit of 168 hours).

Phase H3 represents final analysis on the processed data. Many projects at NERSC provide
web portals so that users can download the raw data from Phase H1, interact with analyzed data
from Phase H2, and look at systematically collected provenance information. This phase may be
repeated many times by different users over the course of many years. As such the input data,
highest value analyzed data and provenance information must be saved “forever”. It is therefore
important that this data remain easy to access and available in a short enough time-period to avoid
user frustration.

1.3.3 Commonalities

The features provided by Dakota and WMS include

• Efficient scheduling of an ensemble of independent runs on a supercomputer. The work per
run is often variable and so dynamic load balancing strategies are implemented to improve
overall throughput. Queue wait time can also be significant and so multiple runs are often
bundled together to improve overall throughput.

• Collecting results from each run in the ensemble.

• Recovery from failures when some or all of the individual runs die.

• Detailed monitoring of ensemble progress and saving provenance information.

2 Mapping Workflows to Machine Architectures

In this section we describe ways to map the two example workflows to the Trinity [5] system
architectures. We also discuss how alternative architectures featuring emerging technologies may
provide opportunities for new, more efficient workflow mappings in the future.

2.1 Trinity Workflow Mapping

The Trinity systems provide a storage system which contains both SSD and HDD tiers. The SSDs
are used to implement a Burst Buffer (BB) and the HDDs provide the storage for the Parallel File
System (PFS). The product used to implement a BB on commodity SSDs is named Cray DataWarp.
Details about DataWarp can be found in [6]. We briefly describe the functionality here.

The SSD storage in Cray DataWarp nodes is a scheduled resource that is dynamically assigned
to compute jobs based on the capacity requested in the user batch script. The storage can be
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assigned for the lifetime of the compute job: a job reservation, or independently of the compute
job: a persistent reservation. The raw storage can be configured in a scratch mode, where files are
explicitly moved between tiers using a command line or C API, or a cache mode, where file pages
move transparently between tiers according to a user-defined caching policy. Finally, the user may
choose a striped or private access mode where files are either striped across multiple DataWarp
nodes or exist in a single DataWarp node. Most combinations of storage lifetime, configuration
and access mode are supported.

We also describe the longer-term storage interactions that result in data being written out of
and restored into the Trinity PFS. These interactions can occur to both a disk-based capacity tier
called an Inter-Campaign Storage System and an Archival Storage System using magnetic tape.
These long-term storage tiers are currently accessed using nodes external to the supercomputer via
file transfer agents.

2.1.1 Simulation Science Workflow

Phase S1 - Creating the Initial State Creating the initial state requires a small (typically
not larger than 100MB), text-based input file describing relevant initial state parameters. This file
may be staged into the BB and read into the tasks, or simply read directly from the PFS, into the
phase S1 processes. The processes construct the initial state at a useful resolution (and partitioned
across the processes), and write the resulting initial state into the parallel file system.

Phase S2 - Physics Simulation Prior to beginning a simulation job, the initial state and the
most recent checkpoint will be migrated into the BB. The job will then begin by reading a small
configuration file from the PFS, the initial state from the BB, and a checkpoint (if one exists) from
the BB. At the optimal interval, the job will write checkpoints into the BB using the odd/even
scheme described earlier. If the job ends prior to hitting a scheduler imposed wall-clock limit, the
job will also write an end-of-job checkpoint into the BB. During the simulation execution, the BB
control plane will copy checkpoint dumps (approximately one-third) from the BB into the PFS.
At job completion, the most recently written checkpoint resident in the BB will be copied into the
PFS.

Analysis data generated during phase S2, timestep data sets, will also be written into the BB
(assuming the data set is large enough to benefit from using the BB). All analysis data sets will
be migrated into the PFS, and the checkpoint used at the beginning of a simulation job cannot be
deleted from the PFS until the analysis data generated by that job is safely stored in the PFS (due
to the burst buffer favoring performance rather than reliability [7]).

If the phase 2 job resulted in an interesting checkpoint state, the checkpoint will also be copied
from the PFS into longer-term storage (at LANL this is a disk-based capacity tier, while at NERSC
it is a tape archive). Additionally, the most recent versions of full-resolution analysis data are likely
to be stored in long-term storage.

Phase S3 - Downsampling Prior to executing a downsampling job, the full-resolution data sets
to be sampled are fetched into the BB, and the downsampled data set is written into the BB, and
then migrated into the PFS. Once the migration to PFS is complete, the down-sampled data set
will be written to long-term storage, and removed from the PFS when space reclamation occurs.

Phase S4 - Post-processing Post-processing data sets may require the existence of a large
number of the earlier data sets, thus to create or append to the post-processing data set, multiple
data sets will be fetched into the BB prior to post-processing. When a large enough number of
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input data sets and the post-processed data set are in the BB, a job will execute to re-process the
input data sets, and either append to or freshly create a post-processed data set. At completion of
post-processing, the post-processed data set will be stored in both the PFS and long-term storage
(often in replicated fashion) to ensure that the data is both protected and available for analysis.

Phase S5 - Visualization The post-processed data set should be in a format that enables
efficient analysis and visualization. The visualization job will specify which portions of the data
set must be fetched into the BB from the PFS to begin analysis (e.g. a small number of timesteps
to begin with), and then as the scientist examines the data, additional portions of the data set will
be read into memory directly from the PFS.

2.1.2 UQ and HTC Workflows

Phase U1 - Generation of UQ Input Data The U1 state creation is identical to the S1 initial
state creation, with the exception that private input decks for each subsequent U2 pipeline phase
are also created within the BB, and migrated into the PFS for improved reliability.

Phase U2 - UQ Simulation Phase U2 UQ simulations are virtually identical to phase S2 science
simulations with the exception that one of the initial input sets that is initially read by a newly
started simulation job is resident in a BB persistent reservation so multiple jobs may simultaneously
read the data set. The generation of checkpoints and and analysis data sets occurs within BB job-
level reservations, and uses the BB, PFS, and long-term storage resources in the same manner as
a phase S2 simulation job.

Phase H1 - Gather Input Data The shared and private input data sets are placed according
to the needs of phase H2. They are also archived into long-term storage. We describe placements
appropriate for the bio-informatics and ALS workflows run at NERSC.

In bio-informatics workflows, a user generally copies reference genome lookup tables (a shared
data set) from the globally accessible “project” file system to the local high performance “scratch”
file system. The data set will be accessed many times within each workflow pipeline and also by
multiple workflow pipelines. If all workflow pipelines will be run in a single batch job then staging
the data set into the BB could be deferred until phase H2, otherwise, a dummy job could be
submitted to stage the data set into a persistent reservation of BB storage accessible by multiple
batch jobs.

In the ALS workflow, experimental data (a private data set) is automatically copied from the
ALS to the “project” file system using NERSC Data Transfer Nodes (DTNs). A daemon running
on a login node is used to automatically submit phase H2 jobs to a real-time queue when new data
arrives. A future version of the daemon will also likely stage the experimental data into the BB,
where, we anticipate use of a persistent reservation of BB storage to ensure that the BB can be
used on-demand in real-time workflows. At the current time, the stage-in involves copying data
from “project” to “scratch” and then “scratch” to the BB which adds latency to the near real-time
workflow.

Phase H2 - HTC Analysis Input data not already resident in the BB will be staged into the
BB at the start of the job. Intermediate data for file-based communication will remain on the BB
unless the WMS provides restart capability. All final analysis data will be staged out to the PFS.
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Phases U3 and H3 - Analysis Phases U3 and H3 encompass all of the storage interactions
described for phases S3, S4, and S5, with the additional caveat that the number of pipelines per
workflow for HTC and UQ are usually greater than the number of pipelines per simulation workflow,
and while the amount of data analyzed is typically similar, the number of BB reservations, data
set fetches and migrations, and discrete data sets analyzed is normally greater than in simulation
science workflows and controlled by a workflow manager.

2.2 Emerging Technology Workflow Mapping

The authors expect disruptive technology to emerge for multiple technology areas within HPC
system architectures. In this section, we describe opportunities for improved workflow mappings
to hypothetical emerging technologies.

Large Memory Footprint Nodes Workflows may contain phases that have high aggregate
memory footprint or high memory footprint per node requirements. These stages would benefit
from nodes which provide large memory-to-compute ratios. For example, the concurrency of the
initial state generation (phases S1 and U1) is often determined by the number of nodes needed
to provide a given aggregate memory rather than a compute requirement. As such, it may be
helpful to run this stage at a lower concurrency rather than wait in the queue for a large fraction
of the machine to become available. This could increase utilization of the machine and allow the
scientists to make early progress on the workflow. Large memory footprint nodes are also helpful
when an application does not scale beyond a given number of processors, i.e. it is at the strong
scaling limit, or does not support distributed memory parallelism. This often includes visualization
of data sets (stages S5, H3 and U3) and community codes in HTC workflows (stage H2) that were
never originally designed for supercomputers. The ability to statically or dynamically provision
larger memory nodes could potentially make better use of machine resources and increase scientist
productivity.

Reduced Tier Storage During the acquisition of Cori and Trinity, no examples of burst buffers
existed upon which the authors could reliably base their expectations of the proposed burst buffer
architecture. While the Cori and Trinity systems will be the first large-scale systems to deploy
a burst buffer within the DOE computing complex, a great deal of smaller scale deployments
and research has explored methods for leveraging burst buffers. In our analysis of the relevant
scientific workflows and emerging storage media, it has become clear that opportunities may exist
to dramatically accelerate scientific workflows by maintaining larger amounts of data in a high-
performance storage tier. For example, if all of the data generated by HPC and HTC applications
within the application’s allocation can be stored in a fast storage tier and accessed from anywhere
within the machine, there would be no need to provide a scratch storage system external to the
platform. Instead, during an allocation and at allocation completion, newly created data could
be migrated off of the machine’s fast storage onto the Inter-Campaign Storage System (i.e. to a
capacity tier that provides longer term retention) via some network pathway.

As the length of allocations is primarily a facility-specific and facility-controlled policy, if a
machine with a single, extremely fast storage tier could also be provided with several weeks or
months worth of capacity to satisfy a shortened allocation duration, scientists may be able to
realize a significant acceleration in their workflows executing on future architectures. Unfortunately,
the exact amount of high-performance capacity required to accelerate the workflows is currently
unknown; however, the authors believe that an adequately sized high-performance storage tier
may significantly lessen the requirements for a scratch file system, provided that the workflows
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described in this document could be mapped onto that storage architecture (and its control-plane
functionality).

3 Workflow Consistency Requirements

In this section we discuss the data consistency requirements imposed by the scientific workflows
described in this paper. We believe that relaxing POSIX compliance is one way to accelerate
scientific workflows. This could be implemented system-wide or per workflow through an API. We
describe the consistency requirements of individual storage use cases below.

3.1 Analysis

Analysis workflow stages are generally run after the simulation or experiment has completed. This
has the implication that data consistency could be delayed until the end of the data producing
workflow stage using close-to-open consistency. This is the mechanism used in the Network File
System (NFS) and has the effect that consistency is only guaranteed after returning from a close
function call. We believe that these semantics are appropriate for interactive data analysis stages in
which analysis tasks may be run on different compute nodes by many different users. For other data
analysis tasks, e.g. automated post-processing workflow stages, it may be possible to further relax
the consistency requirements by either reducing the scope of consistency to a subset of compute
nodes or users, or further delaying the time until consistency. For example, global consistency
is not needed if the analysis workflow stage is run in the same batch submission job as the data
producing workflow stage and the lifetime of the analysis data is temporary. As another example,
data consistency could be delayed until an analysis workflow stage submitted in a separate job has
started (possibly using job dependencies).

As we look forward, we expect increased use of in-situ and in-transit analysis by scientific work-
flows. In this model data analysis tasks are run concurrently with the data producing task. This
will result in different consistency requirements to the post-processing analysis described earlier.
The ADIOS framework [8] already supports in-situ and in-transit analysis through Dataspaces,
DIMES and Flexpath data transport methods. These transport methods ensure data consistency
by synchronizing access to data stored in DRAM; files and POSIX consistency are replaced with
data in memory and memory consistency. The same memory consistency ideas can of course be
applied to data allocated in NVRAM memory.

3.2 Checkpoint/Restart

The consistency requirements of the checkpoint/restart use case depends on the method used to
construct the checkpoint. Single file checkpoints with multiple writers require byte-level coherence
during data generation, but do not require full POSIX-consistency. File-per-process checkpoint
construction techniques require only close-to-open consistency during data generation. As check-
points are never written after successful creation, once a checkpoint is created it is immutable, and
is subsequently accessed read-only. Restarting a failed job immediately (within the same sched-
uler reservation) with a completed immutable checkpoint should be possible provided the job was
allocated with spare nodes.
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3.3 Input

Input files must support the same semantics as checkpoint files during creation, and are similarly
immutable following creation, with the one difference being that we expect input files to be read
repeatedly. Examples of input files include input decks and tabular data (such as equation of state
databases).

3.4 Out-of-core

Out-of-core files are only used within an application. This is best supported by memory consistency.

3.5 Other

The data volumes for the use cases in this category are typically very small. However, the use cases
often need strict POSIX compliance.

3.5.1 Diagnostics:

Most workflow stages produce various ASCII text files logging computation progress. Users often
monitor these files using tail -f to ensure the workflow stage is progressing as expected. It is also
common for time-stepping simulations to dump integrated quantities for each mesh variable. A
user will often plot these quantities while the simulation is running to detect possible errors as early
as possible. Finally, users often simply run ls -trl in the simulation directory to ensure the sim-
ulation has not deadlocked. All of these diagnostic and monitoring tests depend on POSIX access,
but work acceptably with relaxed consistency models provided the file attributes are immediately
updated.

In future we expect WMS to increase in popularity. This will simplify the monitoring process
and potentially reduce the need for POSIX compliance because all interactions with monitoring
data will happen in a well-defined way.

3.5.2 Semaphore files:

Semaphore or lock files are used to communicate information between independent processes
through the file system. They are often used by experimental workflows to initiate the automated
analysis of new experimental data. For example, the ALS workflow makes use of software named
Spade which is run on computers at the ALS facility and Data Transfer Nodes (DTNs) at NERSC.
The Spade process at ALS sends new beamline data followed by a semaphore file to NERSC using
a file transfer tool. The Spade process at NERSC continually monitors for the presence of new
semaphore files in the globally accessible project file system. POSIX compliance is necessary to
ensure that the payload data is consistent as soon as the semaphore file arrives – however the ac-
tual capacity required for this use-case is quite small and could be satisfied with a small dedicated
POSIX resource. The exact use of semaphore files in Spade is described in [9].

3.5.3 Legacy applications, install and run scripts, makefiles:

Finally legacy applications, install and run scripts, and makefiles often depend on POSIX access
(including advisory locking), but due to the serial nature of these tasks, close-to-open consistency
and similar models have typically proven adequate.
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4 Crossroads and NERSC Workflow Summary

In this section we provide a table describing the characteristics of many of the identified Crossroads
workflows as well as a set of NERSC workflows. The table values are a continuing work in progress,
but represent the information we have currently collected to begin describing the scientific workflows
for future supercomputers.

4.1 Workflows table

The rows in the table are described below and the table is shown in Figure 3.

• Workflow: The name of the workflow. The LANL workflows are EAP, LAP, Silverton and
VPIC; the NERSC workflows are ALS (which represents reconstruction of microtomography
beamline data generated by ALS beamline 8.3.2), CESM, GTS, HipMer, Materials (which
includes Quantum Espresso and BerkeleyGW applications), MILC and Sky Survey; the SNL
workflows are typical UQ workflows enabled by Dakota. LLNL workflows are still in the
process of being captured. The computational characteristics of applications in the workflows
are mostly captured by the Crossroadsbenchmarks [10].

• Workflow Type: The type of workflow. The values Sim, UQ and HTC represent simulation
science, uncertainty quantification and high throughput computing workflows, respectively.
All data for UQ workflows is given per ensemble member.

• Workload Percentage: The percentage of laboratory compute time consumed by this work-
flow. In the case of Tri-labs, each of the Tri-labs members are allocated one-third of the total
available compute time. Note that the ALS and HipMer HTC workflows require much more
storage capacity than the modest compute allocation would suggest.

• Representative Workload Percentage: The percentage of total facility compute time
consumed by this workflow and other similar workflows. For example, the Gyrokinetic Toka-
mak Simulation (GTS) workflow is assumed to represent the compute and storage needs of all
nuclear fusion Particle In Cell (PIC) workflows run at NERSC. Similarly, the EAP workflow
is 60% of LANL’s workflows, but as LANL is allocated only one-third of Cielo, EAP is only
20% of the total Cielo workload. Note that the NERSC representative workload percentage
only adds to 48.2%. We crudely estimate that simulation science workflows account for 85%
of the total NERSC workload; HTC workflows account for the remaining 15%.

• Wall time (hours): The number of wall time hours it takes to run a workflow pipeline on
Edison (NERSC) and Cielo (Tri-labs) using the routine number of cores. Recall that multiple
pipelines are concurrently active during the allocation time period, and that allocations are
6 months in duration for Tri-labs, and 12 months in duration for NERSC.

• Hero Run Cielo Cores: The number of cores the code has been demonstrated to scale to
on Cielo. This number is useful for determining the scale of the absolute largest data sets that
have been generated on Cielo, and understanding how they may grow for a larger machine.

• Routine Number of Cielo Cores: The number of cores needed to run today’s average
problem size on Cielo. A workflow often uses multiple concurrencies, however, we simplify
things by just showing the number of cores used for the bulk of the computation. Note that
occasional “hero” runs may require much higher concurrencies, e.g. HipMer will be used to
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assemble a small number of genomic data sets an order of magnitude larger than has been
shown in the table.

• Number of Workflow Pipelines per Allocation: The number of pipelines run for each
workflow during a single DOE allocation. In our analysis we assume that a single DOE
allocation at NERSC is available for 12 months, while a Tri-labs allocation is 6 months in
duration. The data for UQ workflows is presented as N × M , where N is the number of
ensembles and M is the number of ensemble members.

• Anticipated Increase in Problem Size by 2020: The anticipated growth of data sets
by 2020. For example, if a simulation is expected to use 8x more grid points by 2020 then
this number will be 8. This number could be very low if the project plan is to incorporate
additional physics or more detailed physics models into a simulation rather than increase
mesh resolution.

• Anticipated Increase in Number of Workflow Pipelines per allocation by 2020:
The anticipated growth in throughput by 2020. For example, if the number of simulations in
a UQ ensemble is expected to grow by 2x then this number will be 2. This is an extremely
important number to quantify the expected growth of experimental workflows run at NERSC.

• Storage APIs: The storage APIs used during the workflow. POSIX means that read and
write system calls were used (though there is no requirement for POSIX consistency), HDF5,
NetCDF and pNetCDF indicate use of a high-level I/O library, and MPI-IO indicates use of
the MPI-IO interface.

• Routine Number of Analysis Datasets: The number of analysis data sets typically
generated per workflow pipeline. This number is wholly dependent upon the problem being
studied by the user, and thus is an approximation averaged across many pipelines. Under no
circumstances should this be considered a maximum value for a pipeline.

• Routine Number of Analysis Files: The actual number of files generated per workflow
pipeline. This value may be less than the number of data sets if multiple application data
sets are appended to the same file. It may be larger if an application performs file per process
output.

• Checkpoint Style: A description of the number of checkpoint files in each checkpoint data
set. N to 1 results in a single checkpoint file, N to N results in a checkpoint file per process,
N to M means the number of checkpoint files produced is configurable, and explicit use of
a value for M means that M files are always produced. The checkpoint data set size can be
obtained by dividing the temporary checkpoint data retained row by three (see the odd, even,
end of job checkpoint strategy described in Section 1.2)

• Files Accessed/Created per Pipeline: The number of files created and/or accessed during
a routine workflow pipeline. Individual workflow pipelines may use different numbers of files
based on the scale and problem space. This attempts to capture the number of files routinely
created and/or accessed during a single representative pipeline. It does not include the number
of checkpoint files produced for resilience purposes (because this would change according to
JMTTI and machine bandwidth).

• Data description (95% of storage volume): A description of how the majority of ap-
plication data is organized in the file. This can include multidimensional arrays and variable
length records.
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• Amount of data retained: The capacity needed to store data used and produced by a
single workflow pipeline. The capacity is given in units of percentage of system memory on
Cielo. Use Equation 1 to convert the capacity from a percentage of system memory (Cm) to
GiB (Cg) for a single problem size run on Nc cores. Cielo has 2 GiB of DRAM memory per
core (M).

Cg =
Cm

100
×M ×Nc (1)

The duration that data must be stored is categorized into 3 groups: during a single pipeline,
during a campaign, and forever. This is then further subdivided into different storage use
cases: checkpoint/restart, analysis, read-only input, and out-of-core. For simplicity, we as-
sume all data generated during the workflow initially passes through the burst buffer.

– Temporary: The capacity needed to store data which only needs to exist for the
duration of a single workflow pipeline. Examples include temporary checkpoint files
for resilience and restarting a simulation, temporary files for exchanging data between
different workflow stages, and applications using out-of-core algorithms.

– Campaign: The capacity needed to store data which must exist for the duration of
a workflow allocation. Examples include additional files for ad-hoc or unplanned data
analysis.

– Forever: The capacity needed to store data which must be saved forever. This is the
long-term storage requirement of the data used and produced in a single DOE allocation.

The UQ data decorated with ’*’ is shared between ensemble members.
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Figure 3: Crossroads and NERSC workflow summary table. This data may change as we continue
our discussions with domain scientists 15



4.2 Example uses of table data

Q1. How much temporary storage is needed to run a typical VPIC workflow pipeline?
A single VPIC simulation job requires 222.75% of memory as temporary storage. At 30,000

cores the capacity required to store 222.75% of memory is 130.51 TiB.

Q2. How much storage is used for productive I/O (i.e. not defensive I/O) in a typical
VPIC workflow pipeline?

The total storage used for checkpoint/restart for resilience purposes is 18.75% of memory at
30,000 cores. This means that 200.10 TiB (211.08 TiB - 10.99 TiB) of storage is used for productive
I/O.

Q3. How much long-term storage is needed to archive all data from the ALS workflow
per allocation?

There are 10,760 workflow pipelines executed per year and the data saved forever corresponds
to 116.84% of memory at 100 cores. This is equal to 233.68 GiB of data per workflow pipeline.
This adds up to 2.40 PiB of data per campaign and consists of 0.22 PiB of beamline data and 2.18
PiB of analyzed data.

Q4. How is the Sky Survey workflow expected to change by 2020?
The growth in problem size is 1.00x and growth in throughput is 2.38x. The problem size is

expected to remain constant because the resolution of the sky images will not change. This is be-
cause the resolution of Dark Energy Camera, which is used to collect the images, will not change.
The throughput is increasing because the number of images is expected to grow from 1.26 million
to 3 million.

Q5. How does the storage need of the HipMer workflow change depending on whether
multiple workflow pipelines are scheduled simultaneously or consecutively?

We assume that we want to run ten workflow pipelines. If the workflow pipelines are run si-
multaneously then the storage requirement is 100.54% of memory at 960 cores all multiplied by 10
workflow pipelines. This is 18.85 TiB. If, on the other hand, the workflow pipelines are run con-
secutively then the storage requirement is 13.05 TiB (12.41 TiB for the long-term data products
and 0.64 TiB as temporary scratch space for 1 pipeline at a time). The capacity difference could
be significant if the user must schedule a fixed capacity of fast storage.

Q6. How much forever storage is needed for a typical Dakota-A UQ ensemble?
The example Dakota-A workflow uses an ensemble of 100 ensemble members. The data saved

forever includes a single input mesh and multiple analysis files. The same input mesh is read by
all ensemble members and has size 0.48 TiB. Each ensemble member also generates 0.136 TiB of
analysis data. This adds up to 14.1 TiB (0.48 TiB + (0.136 TiB × 100))

5 Closing

From the above described workflows, the Crossroadsteam has mined many of the requirements used
to draft our requirements for procuring compute resources. A careful reader of these workflows will
likely find additional insights and generalizations that offer opportunities to improve workflow
performance on APEX machines.
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A Glossary of Terms

To better understand this document we provide the following glossary of terms used within this
document.

Allocation A fixed quantity of computational time granted to a single project to use in the
execution of their workflow on the capability-class computer. An allocation is used by running
the 10s - 1000s of parallel jobs needed to satisfy a workflow.

Analysis Dump Data written from a parallel application for the express purpose of scientific
analysis or visualization. The data is typically domain dependent and is typically analyzed
in conjunction with other analysis dumps from the same parallel application (e.g. each dump
may represent the system state at each second of the simulated system, with a total of 200
seconds simulated during a campaign).

Campaign A Tri-labs centric method of aligning the start and end times of a set of granted
allocations. For example, during Cielo Campaign 9, approximately 50 6-month allocations
were started and completed. NERSC does not align allocations, therefore there is no NERSC
equivalent to a campaign.

Checkpoint Dump Data written from a parallel application that allows an interrupted applica-
tion to resume from the progress made up to the time of the data creation. Simulations read
the checkpoint dump at the beginning of a job in order to leverage prior progress toward
simulation completion.

Data Retention Time Describes the time interval during which the data must be made durable.
For example, an application that produces checkpoint dumps requires that those dumps must
exist long enough for the application to progress far enough to create a subsequent checkpoint
dump, or the application completes successfully. In the described workflows we describe three
relevant retention times: immediate, meaning the data is temporary in nature and will be
replaced with more up to date data as soon as possible; campaign, meaning the data is
valuable throughout the allocation; and forever, indicating the data will outlive the life of the
machine.

Gamma The optimal checkpointing interval for a computational job parameterized by both the
time to create a checkpoint and the JMTTI. If JMTTI is 24 hours, Gamma=0.1 corresponds
to an optimal compute interval between checkpoints of 2.4 hours.

Job A computational job runs on the supercomputer and consumes a portion of the allocation of
compute time.

Pipeline A pipeline is an instantiation across some or all of the phases in a workflow. A scientific
simulation workflow that performs 3 small-scale 2-d simulations with analysis followed by
1 large 3-d simulation with analysis would result in 4 total pipelines. For high-throughput
workflows a pipeline would be limited to ensembles of simulation runs, or collections of analysis
tasks. For example, a high-throughput climate workflow may use 10 initial sets of weather
to seed 10 independent simulation runs, followed by a single analysis phase that averages the
results from all 10 simulations. The climate workflow would have a total of 10 pipelines.

Proposal A research proposal is a document that provides a detailed description of the manner
in which the supercomputer will be used to achieve scientific goals.
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Simulation An execution of a parallel application that simulates physical phenomena. Simulations
may take anywhere from hours to weeks or months to finish. A simulation will typically
generate a series of restart dumps that allow the simulation to be composed into a series of
jobs that execute on the supercomputer.

Tri-labs A designator for describing the three research labs primarily tasked with supporting
nuclear safety: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Lab-
oratory (LANL), and Sandia National Laboratory (SNL). In this document, Tri-labs is used
as a designation to describe the collection of users of one of of the proposed machines. On
the Tri-labs machine, each of the three Tri-labs sites receives an identically sized machine
allocation per campaign.

Workflow A description of the dependencies and frequencies of a series of inter-related computa-
tional jobs. A proposal typically describes the constituent workflows required to support the
proposed scientific inquiry.

Workload A description of how workflows are executed on the supercomputer. The workflows
may be co-scheduled or interleaved to the degree possible within the workflow constraints.
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